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We extend the Kolmogorov phenomenology for the scaling of energy spectra in high-Reynolds-number
turbulence, to explicitly include the effect of helicity. There exists a time scaletH for helicity transfer in
homogeneous, isotropic turbulence with helicity. We arrive at this time scale using the phenomenological
arguments used by Kraichnan to derive the time scaletE for energy transfer[R. H. Kraichnan, J. Fluid Mech.
47, 525(1971)]. We show that in generaltH may not be neglected compared totE, even for rather low relative
helicity. We then deduce an inertial range joint cascade of energy and helicity in which the dynamics are
dominated bytE in the low wave numbers with both energy and helicity spectra scaling ask−5/3; and bytH at
larger wave numbers with spectra scaling ask−4/3. We demonstrate how, within this phenomenology, the
commonly observed “bottleneck” in the energy spectrum might be explained. We derive a wave numberkh

which is less than the Kolmogorov dissipation wave number, at which both energy and helicity cascades
terminate due to dissipation effects. Data from direct numerical simulations are used to check our predictions.
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Energy and helicity[1,2] are the two known inviscid in-
variants of the Navier–Stokes equations. It was postulated in
Ref. [3] that in isotropic flows with helicity, these quantities
cascade together from large to small scales. This joint for-
ward cascade of energy and helicity has been verified by
direct numerical simulations, most recently at a resolution of
5123 grid points [4]. Kraichnan[5] defined the shear time
scaletE for energy transfer, based solely on energy dynam-
ics. Assuming that helicity dynamics are also controlled by
tE, a k−5/3 inertial range scaling was established for both
energy and helicity spectra[3].

We would first like to ascribe spatial geometrical proper-
ties to the types of quantities used to derive the relevant time
scales. We recall the spectral formulationkũiskdũj

*skdl of the
two-point velocity correlation function in isotropic, homoge-
neous, statistically stationary turbulence. It may be decom-
posed into its index-symmetric and index-antisymmetric
parts as

Eijskd = 1
2fkũiskdũj

*skdl + kũjskdũi
*skdlg, s1d

Ẽijskd = 1
2fkũiskdũj

*skdl − kũjskdũi
*skdlg, s2d

whereũi = ũi î andũi is the magnitude of theith component of
the velocity vector in a chosen Cartesian coordinate system.
Equation (1) when contracted with the projection operator

di j /2 and then averaged overk̂ gives the energy spectrum
Eskd. It is therefore clear that the types of correlations con-

tributing toEskd are those in whichi = j and henceî, ĵ and the

unit wave vectork̂ all lie in the same plane. The correspond-
ing picture in real space is to consider the index-symmetric

two-point spatial correlation functionsRij
Ssr d= 1

2kuisxdujsx
+r d+ujsxduisx+r dl which has the tensor representation
,Asrddi j +Bsrdsr ir j / r

2d for the isotropic case; the incom-
pressibility constraint gives a relationship betweenAsrd and
Bsrd. This index-symmetric correlation function thus has

nonzero contributions whenî, ĵ , andr̂ are co-planar. We will
refer to these as “in-plane” correlations(see Fig. 1 for a
sketch of these types of isotropic correlations). Similarly, Eq.
(2) when contracted with the antisymmetric curl operator

î«i jl kl, whereî =Î−1, and then averaged overk̂ gives the total

helicity densityHskd=2kẼskd. [Note that this relationship is
distinct from the Schwartz inequalityuHskduø2kEskd.]
Therefore the types of correlations contributing toẼijskd [and

hence toHskd] are those in whichî, ĵ , and unit wave vector

k̂ are mutually orthogonal. Again, the corresponding formu-
lation in real space is the index-antisymmetric two-point spa-
tial correlation functionsRij

Asr d= 1
2kuisxdujsx+r d−ujsxduisx

+r dl which has the tensor representation,«i jl r l / r and thus

has nonzero contributions whenî, ĵ , and r̂ are mutually or-

FIG. 1. The in-plane longitudinal and transverse correlation con-
figurations which contribute to the isotropic symmetric correlation
function Rij

Ssr d.
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thogonal to each other(see Fig. 2 for a sketch). We will refer
to these as “out-of-plane” correlations. HereEskd
=ouk u=k

1
2uũskdu2 andHskd=ouk u=kũskd ·ṽs−kd whereũskd and

ṽskd are the Fourier transforms of the velocityusxd and the
vorticity vsxd= = 3usxd, respectively.

The Kraichnan time scale for energy transfertE corre-
sponds to correlations of the typeEijskd [Eq. (1)] which arise
due to shearing motions in the plane of coordinatesi, j , and

unit wave numberk̂ [5]. Such in-plane shearing motions can-

not give rise to correlations of the typeẼijskd [Eq. (2)] which

relate orthogonal componentsui î anduj ĵ across the third mu-

tually orthogonal directionk̂. For this we require out-of-
plane shearing motions as depicted in Fig. 2, which are pro-
vided by the presence of helicity[6,7]. We first derive the
time scaletH, associated with such an out-of-plane shear.
The governing factor is the relative helicityuHskdu / f2kEskdg
which will be shown to fall off linearly in wave number
restoring parity ask becomes very large. Crucially, we will
show that the ratiotE/tH,huHskdu / f2kEskdgj1/2, which de-
cays slower than the relative helicity. Therefore the effect of
tH cannot be neglected. We demonstrate the effect of this
new time scale on energy and helicity spectra, and offer an
interpretation of the “bottleneck” effect observed in mea-
sured energy spectra. Finally, the new dynamics reveal a dis-
sipation scale which is larger than the Kolmogorov dissipa-
tion scale, suggesting that the joint cascade is truncated
sooner in wave-number space if helicity is present.

We performed two simulations of the three-dimensional
(3D), forced Navier-Stokes equation in a unit-periodic box
with 512 (data I), and 1024(data II) grid points to a side,
respectively. In these units, the wave numberk is in integer
multiples of 2p. Energy and helicity were injected into the

flow for kø2 at each time step. The forcing scheme was the
same as in Ref.[8]. For case I we imposed maximum helicity
in kø2 [4,9], resulting in a mean helicity over time of −26.8
in the units of our simulation. For case II the helicity input
was uncontrolled and random, resulting in a mean helicity of
−0.12 which is essentially zero compared to case I. The spec-
tra for case I were averaged over 40 snapshots spanning eight
large-eddy turnover times after spin up. The spectra for case
II were averaged over 48 snapshots spanning two large-eddy
turnover times after spin up. The spin up time in each case
was defined to be when the input rate of energy matched the
dissipation rate of energy, the flow having achieved statisti-
cally steady state. Additional parameters of the simulations
are given in Table I.

We recall the introduction in Ref.[5] of the distortion
time scale(or eddy-turnover time) of an eddy with wave
numberk,

tE
2 , SE

0

k

Espdp2dpD−1

, fEskdk3g−1, s3d

where Kraichnan asssumes that only wave numbers&k will
have a shearing action on wave numbers of orderk; the
effects from wave numbers.k will average out. Notice that
the local shear time scale thus defined depends on the in-
plane correlations which contribute to the energy spectrum as
described above. Analogously, we can define the time scale
tH for out-of-plane distortions of an eddy, from the antisym-
metric co-spectrum,

tH
2 , SE

0

k

uẼspdup2dpD−1

, S1

2
uHskduk2D−1

. s4d

The distortion or shear corresponding totH is different from
the distortion corresponding totE of Ref. [5]. The shear in
the former case derives from the out-of-plane correlations
contributing to the antisymmetric co-spectrum and hence to
the helicity spectrum. The shear motion in this case is an
out-of-plane twist for which the time scale is different than
the in-plane shear rate corresponding totE.

We estimate the transfer rate(flux) of helicity through
wave numberk, FHskd,kuHskdu /tH,k2uHskdu3/2. Assuming
steady-state, inertial range behavior with constant flux of he-
licity FHskd=h, the mean helicity dissipation rate, we obtain

Hskd < h2/3k−4/3. s5d

We comparetH with the time scale for energy transfer of

FIG. 2. The out-of-plane correlation configuration which con-
tributes to the isotropic antisymmetric correlation functionRij

Asr d.
The intrinsic “handedness” of this configuration, indicated by the
curved arrow, cannot appear in the geometry of Fig. 1.

TABLE I. Parameters of the numerical simulations I and II.n is the viscosity;Rl is the Taylor-Reynolds
number; mean total energyE= 1

2okũskd2; « is the mean energy dissipation rate; mean total helicityH
=okũskd ·ṽs−kd; h is the mean helicity dissipation rate;h«=sn3/«d1/4; hh=sn3/hd1/5.

N nsunits of 104d Rl E « H h h«sunits of 103d hhsunits of 104d

I 512 1 270 1.72 1.51 −26.8 62.2 1.7 9

II 1024 0.35 430 1.87 1.75 −0.12 13.2 1.3 4
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Eq. (3),

tE

tH
, S uHskdu

2kEskd
D1/2

. s6d

Since huHskdu / f2kEskdgj1/2@ uHskdu / f2kEskdg as the latter
tends to zero, Eq.(6) implies that even for small values of
the relative helicity, the time scales can become comparable.
This is a fundamental point of difference from previous
works in which the presence of helicity was considered in-
consequential[3]. In previous arguments the fact that relative
helicity must go to zero as 1/k in wave-number space meant
that helicity could not have an effect on the long term dy-
namics since it must eventually be dominated by energy,
restoring parity. Our present analysis shows that while the
relative helicity does indeed go rapidly to zero, the relative
time scaleof helicity and energy transfer vanishes much
more slowly. In other words, while the energy time scale is
always faster, because of the Schwartz equality, the helicity
time scale can remain comparable to it well into the large
wave numbers.(For the initial value problems(decaying tur-
bulence), the evolution equation of the relative helicity
Hskd / f2kEskdg and its analytical bounds can be found in Ref.
[10].)

With this second time scale at hand, we can now justifi-
ably ask what the effect oftH will be on the energy spec-
trum. The energy flux« through wave numberk is

« ,
kEskd

tH
, kEskdHskd1/2k. s7d

Using Eq.(5) in Eq. (7), we get

Eskd < «h−1/3k−4/3. s8d

To summarize thus far, thetE dynamics result in Kolmog-
orov k−5/3 scaling in both energy and helicity spectra,
whereastH dynamics result ink−4/3 scaling in both. Clearly,
the steeperk−5/3 scaling should dominate in the low wave
numbers while thek−4/3 should manifest in the higher wave
numbers. We emphasize that in order for the latter scaling to
be visible in the high wave numbers,tH cannot be too much
slower thantE. As shown above, according to Eq.(6), this
may occur for very modest relative helicity in the high wave
numbers, contrary to previous assumptions. The main point
of our paper is that in general, the helicity time scaletH may
not be ignored.

Figure 3 shows the energy and helicity spectra from our
simulations. Each of the spectra is compensated byk4/3 and
by k5/3 in order to distinguish the dominant scaling. For the
strongly helical case I, there is good agreement withk−4/3

scaling for both the energy and helicity spectra in approxi-
mately the same range[Figs. 3(a) and 3(b)] of slightly less
than a decade. Note that the compensation withk5/3 results in
the commonly observed bottleneck phenomenon which we
will discuss below. The energy spectrum of II[Fig. 3(c)]
shows a range ofk−5/3 scaling followed by a range ofk−4/3

scaling(which appears as a bottleneck in thek−5/3 compen-
sated plot). The scaling ranges are modest even at this high
resolution of 10243, but nonetheless the results are telling;

the scaling is most certainly notk−5/3 throughout and the
agreement withk−4/3 though over a short range, certainly
indicates shallower thank−5/3 scaling behavior of the bottle-
neck region. The relative helicities in the range 10,k,100,
where thek−4/3 scaling is seen, are shown in Fig. 4. For I, the
relative helicity falls from about 10% to about 3% corre-
sponding totE/tH ranging from 32% to 17% according to
Eq. (6). Despite the negligibly small total helicityH=−0.12
of II, and its noisy helicity spectrum(not shown), its relative
helicity values lie between 1% and 5%. This implies that
tE/tH could be as much as 22%. In both casestH might in
fact not be much longer thantE. It is important at this stage
to comment on the appearance of a helicity-dependent scal-
ing feature in flow II which is nominally helicity free on
average. The first point is that zero average helicity does not
imply that the average helicity spectrumHskd is zero for all
k. In fact, we only input energy and helicity in the low wave
numbers, the Navier-Stokes dynamics determines the helicity
in all other wave numbers, including the highest wave num-
bers where in fact there is the well-known viscous helicity
production. There is therefore no control of the helicity in a
given wave number and the spectrum is generally not zero
everywhere. The second point is that our analysis shows that
it is not the total helicity but therelative helicity which de-
termines the tradeoff between the two time scales. Given
these two points it is not contradictory to measurek−4/3 spec-
tral scaling in the flow with negligible mean helicity. In fact,
this flow is probably more similar to most experimental
flows which are close to helicity free in the mean but with
uncontrolled and often unknown helicity spectra[11].

These results are the first indication of the possibility of
k−4/3 scaling ranges in both energy and helicity spectra simul-
taneously. The possibility of a “pure” or “maximal” forward
cascade of helicity scaling ask−4/3 [3] with inverse cascade
of energy scaling ask−7/3 does not arise. This is because in
our analysis we have retained the effect of the helical time
scale tH and allowed it to modify the spectral dynamics.
Since the scaling corresponding totH is k−4/3, a slower decay
thank−5/3, its “signature” in the spectra can dominate at large
k even as the overall parity is being restored.

Based on the analysis above, we propose that the bottle-
neck in the total energy spectrum is in fact achange in the
scalingof the energy spectrum, from ak−5/3 regime in which
the tE dynamics dominate to a less steepk−4/3 regime in
which thetH dynamics become significant. We will use the
kinematic arguments of Ref.[12] with our new phenomenol-
ogy and dynamics to analyze the bottleneck for such a heli-
cal influence. In simulations, it is possible to compute the
total energy spectrumEskd=s1/2douk u=ku ũskdu2 as a sum over
a shell of radiusk rather accurately. In experiments it is
convenient to measure the one-dimensional(1D) longitudi-
nal and transverse spectra along the measurement direction,
sayz. In our 3D flow simulation we calculate the 1D spectra
as follows. The 1D Fourier transform in thez direction of the

velocity usxd is ũ̃sx,y,kzd=s1/Ndon=1
N eikzznusx,y,znd where

0økzøp /dz. The longitudinal (transverse) 1D spectrum,
averaged over thex−y plane, is defined by
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ELsTdskzd =
1

s2N2d o
p,q=1

N

uũ̃zs'dsxp,yq,kzdu2, s9d

where uũ̃'u2= uũ̃xu2+ uũ̃yu2. In isotropic flow, the 1D spectra
should be independent of the direction in which the Fourier
transform is performed. Our time-averaged longitudinal
spectra computed in the thex, y, andz directions all collapse
and the transverse spectra do the same. We average the 1D
spectra in the three coordinate directions and drop the use of
the subscriptz to denote the direction of the Fourier trans-
form. In isotropic flow there is a relation between the 1D and
3D spectra[12,13],

Eskd = − kSdEL

dk
+ 2

dET

dk
D . s10d

Our spectra satisfy Eq.(10) very well for kù10 and fairly
well in the lower wave numbers. As emphasized in Ref.[12],
Eq. (10) is a local relationship, wherein the functional form

of the total spectrumEskd is fully determined by the local
behavior ofEL and ET at a given wave number. For homo-
geneous, isotropic flows with helicity, it is reasonable to sup-
pose thatELskd [see the definition in Eq.(9)] would mainly
carry contributions from the in-plane shear time scaletE.
However,ETskd, which is related to the transverse compo-
nents of the velocity Fourier transform, could be influenced

by tH dynamics coming fromẼskd. The correlation time be-
tween transverse components can be slowed down by the

dynamics ofẼskd which arise due to the presence of helicity.
Such coupling may not be deduced from kinematic argu-
ments; it requires proper consideration of the new dynamics.
Furthermore, it is not possible to see this coupling in the
unclosed lowest-order Kármán-Howarth dyanamical equa-
tions wherein the symmetric and antisymmetric parts com-
pletely decouple for homogeneous flows[7]. It was pointed
out in Ref.[6] that higher-order statistical equations for he-
lical turbulence should show the coupling. The coupling is

FIG. 3. Compensated spectra of(a) energy and(b) helicity, for data I. Observe thek−4/3 scaling(dashed curve) range indicated by the
horizontal line segment.(c) Compensated energy spectrum for data II. The horizontal line segments indicate ranges ofk−5/3 (solid curve) and
k−4/3 (dashed curve) scaling.
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seen explicitly in the Eddy damped quasinormal Markovian
(EDQNM) closure[14].

Figure 5 shows the compensated longitudinal and trans-
verse spectra for simulation II. The bottleneck is greatly di-
minished inELskd [Fig. 5(a), solid curve] which shows close
to k−5/3 scaling throughout the inertial range. InETskd [Fig.
5(b), solid curve], the bottleneck persists although its peak
occurs slightly earlier in wave number than the bottleneck
for the corresponding total spectrum. For completeness, we
have also shown the 1D spectra compensated byk4/3 [Fig. 5,
dotted curves]. Based on our arguments above, we might
have expected a strongerk−4/3 scaling region of the trans-
verse spectrum; such behavior is not clearly observed al-
though there is a tendency towards a scaling shallower than
k−5/3 in the bottleneck regime. We plan in a future work to
check the present indications that the bottleneck will be
stronger in the transverse spectrum than in the longitudinal
one because of the greater contamination of the former by
the helical co-spectrum dynamics. This raises the intriguing
possibility thattH affects the scaling of transverse structure
functions, accounting for some of the observed difference
between the scaling exponents of longitudinal and transverse
structure functions in near-isotropic, high-Reynolds number
turbulence data[15]. Such contributions would appear as
parity breaking in theisotropic small scales, and might not
be easily disentangled by, for example, the SO(3) group de-
composition methods[see Ref.[16] and references therein]
used to extract isotropic contributions to nonhelical turbu-
lence statistics. Although this aspect of the influence of he-
licity dynamics remains speculative we hope this work pro-
vides sufficient motivation for further investigation.

The bottleneck is a well-known phenomenon which has
been observed in experimental measurements[17,18] and
Navier-Stokes simulations[19,20]. While the mean helicity
of the flows in these investigations might be zero(although
many do not report the mean helicity, using the often reason-
able assumption that the flow is nonhelical on average), their

relative helicities might not be, and indeed have not been
reported, because the connection between the Kolmogorov
phenomenology, helicity dynamics, and the bottleneck did
not exist. There have been various different approaches taken
to explain this phenomenon, including viscous effects[21]
and various kinematic arguments used to fit to a param-
etrized form[22–24]. What we are proposing here is a fun-
damental physical cause of the bottleneck due to the helicity
dynamics slowing down the cascade of energy and helicity,
the two conserved quantities in turbulence. Further, our em-
pirical evidence, particularly in case II, where the total he-
licity is negligibly small, indicates that this effect could oc-
cur even in flows with essentially zero mean helicity but with
nonzero relative helicity spectra[i.e., Hskd is not zero every-
where]. Said differently, even ifeHskddk=0, there can be a
range ofk whereuHskdu and henceuHskdu /2kEskd is finite and
possibly large enough thattE/tH,fuHskd u /2kEskdg1/2 is not
negligible. This effect was reported in an experimental work
investigating spontaneous reflection-symmetry breaking in

FIG. 4. The relative helicities for(a) data I and(b) data II, in the
range 10,k,100, where Fig. 3 showsk−4/3 scaling. The relative
helicity lies between 3% and 10% in(a) and between 1% and 5% in
(b). The corresponding ratio of time scalestE/tH [Eq. (6)] is esti-
mated to be up to 32% for data I, up to 22% for data II.

FIG. 5. Compensated(a) longitudinal and(b) transverse energy
spectra for the simulation II.ELskd shows a diminished bottleneck
where the full spectrumEskd of Fig. 3(c) has a pronounced bottle-
neck.ETskd shows a range ofk−5/3 coinciding with that of Fig. 3(c)
and a persistent bottleneck with a scaling shallower thank−5/3 scal-
ing in the region of the bottleneck.
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boundary layer flows[11]. Such a scenario may occur since,
while global helicity is statistically conserved in the inertial
range, local helicity is not. Letjsxd be the local helicity
jsxd=usxd ·vsxd. The equation forj reads

]tj + uj] jj = − ] jsv jpd + 1
2] jsv juuu2d + nf¹2j − 2s]iujds]iv jdg.

s11d

Locally, both the nonlinear and the viscous terms in the he-
licity dynamics might play a role in enhancing or diminish-
ing the helicity. If the nonzero relative helicity in the scaling
range arises from the nonlinear term, then the effects we see
are indeed valid in the high-Reynolds number(inviscid)
limit; if they arise from the viscous term then the effects we
see would disappear at very high Reynolds numbers. This
hypothesis is not testable at the present time but our work,
which studies data from simulations which are similar to, or
the same as, several performed before(see, for example,
Refs. [8,25,26]), with comparable Reynolds number, gives
substantial motivation to further examine these questions.
We hope in particular to motivate measurements of the rela-
tive helicity and scaling behavior of the bottleneck region, in
other flows which report the bottleneck phenomenon, in or-
der to further check this connection.

We finally present a key result from analysis of the con-
vergence of the dissipation integrals for a two-time-scale cas-
cade. In Ref.[4] the same analysis was performed assuming
a single time scaletE. The total dissipation of energy and
helicity may be written as

DE = 2nSE
0

kc

dk k2Eskd +E
kc

kd

dk k2EskdD , s12d

DH = 2nSE
0

kc

dk k2Hskd +E
kc

kd

dk k2HskdD , s13d

where

Eskd = H CE«2/3k−5/3 for k , kc;

CH«h−1/3k−4/3 for kc , k , kd,
s14d

Hskd = HcE«−1/3k−5/3 for k , kc;

cHh2/3k−4/3 for kc , k , kd,
s15d

andCE,CH ,cE, andcH are constants. The precise estimate of
the transition wave numberkc is unimportant to what fol-
lows. The upper wave numberkd denotes the maximum be-
yond which the cascade is completely suppressed by viscos-
ity. We obtain

DE , n « h−1/3 kd
5/3, s16d

DH , nh2/3kd
5/3. s17d

In Ref. [4] kd=k«,s« /n3d1/4 (the Kolmogorov dissipation
wave number). In our case, settingkd=k« causes the integrals
to diverge asn−1/4 in the limit n→0. The choicekd
,sh/n3d1/5 ensures that the integrals converge to their cor-
rect values for the statistically steady state,DE=« and DH
=h. We will call this new wave numberkh since it depends
solely on the helicity dissipation rate. It must be distin-
guished from thekH of Ref. [27] which depends on both
energy and helicity dissipation rates. In the limitn→0, k«

@kh. In our simulationsk«.kh by a factor of about 2.5.
While in agreement with our analysis, we cannot really dis-
tinguish between the two wave numbers in these data. How-
ever, we suggest that the resolution requirement for measure-
ments in turbulence with helicity, or more precisely, with
nonzero helicity spectra, might be weaker than that in turbu-
lence without helicity.
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